Power Semiconductor Devices Baliga

"The world-wide proliferation of cellular networks has revolutionized telecommunication systems. The transition from Analog to Digital RF technology enabled substantial increase in voice traffic using available spectrum, and subsequently the delivery of digitally based text messaging, graphics and even streaming video. The deployment of digital networks has required migration to multi-carrier RF power amplifiers with stringent demands on linearity and efficiency. This book describes the physics, design considerations and RF performance of silicon power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) that are at the heart of the power amplifiers. The recent invention and commercialization of RF power MOSFETs based on the super-linear mode of operation is described in this book for the first time. In addition to the analytical treatment of the physics, extensive description of transistor operation is provided by using the results of numerical simulations. Many novel power MOSFET structures are analyzed and their performance is compared with those of the laterally-diffused (LD) MOSFET that are currently used in 2G and 3G networks."--BOOK JACKET. Title Summary field provided by Blackwell North America, Inc. All Rights Reserved Offers a basic, up-to-date introduction to semiconductor fabrication technology, including both the theoretical and practical aspects of all major steps in the fabrication sequence Presents comprehensive coverage of process sequences Introduces readers to modern simulation tools Addresses the practical aspects of integrated circuit fabrication Clearly explains basic processing theory The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with

very limited possibilities to a practical means of fabricating electrical components and devices with lossless con ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering. Very Good, No Highlights or Markup, all pages are intact. An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction. characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design

techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.

During the last 30 years, significant progress has been made to improve our understanding of gallium nitride and silicon carbide device structures, resulting in experimental demonstration of their enhanced performances for power electronic systems. Gallium nitride power devices made by the growth of the material on silicon substrates have gained a lot of interest. Power device products made from these materials have become available during the last five years from many companies. This comprehensive book discusses the physics of operation and design of gallium nitride and silicon carbide power devices. It can be used as a reference by practicing engineers in the power electronics industry and Page 3/20

as a textbook for a power device or power electronics course in universities. Request Inspection Copy viii The growing use of NTD silicon outside the U.S.A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza tion of NTD silicon, and the use of NTD silicon for device appli cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans mutation doping of nonsilicon semiconductors had begun to accel erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the present and anticipated future of NTD silicon, the processing and characterization of NTD silicon, and the use of NTD silicon in semiconductor power devices. In addition, four papers were pre sented on NTD of nonsilicon semiconductors, five papers on irra diation technology, three papers on practical utilization of NTD silicon, four papers on the characterization of NTD silicon, and five papers on neutron damage and annealing. These papers indi cate that irradiation technology for NTD silicon and its use by the power-device industry are approaching maturity.

This symposium was the sCientific-technical event of the centennial celebration of the Asea Brown Boveri Switzerland. The purpose was to assess the present

state of the art as well as shaping the basis for future progress in the area of power devices and related power circuits. The merger of Brown Boveri (BBC) with Asea to Asea Brown Boveri (ABB) three years ago gave new stimulus and enriched the technical substance of the symposium. By 1991, 100 years after the formation of BBC in Switzerland as a single company, this organization has been decentralized, forming 35 independent ABB companies. One of them - ABB Semiconductors Ltd. - directly deals with the power semiconductor business. These significant changes reflect the changes in the market place: increased competition and higher customer expectations have to be fulfilled. In line with the core business activities of ABB and with the concept of sustainable development, it is natural for ABB to be active in the area of power devices and circuits. Increased awareness towards energy conservation is one of the main drives for these activities. User friendliness is another drive: integration of intelligent functions, e.g. protection and/or increased direct computer interfacing of the power circuits. Therefore, also the R&D activities related to the subject of this symposium will in the future be characterized by an even stronger coupling with the market needs. For the members of the R&D Laboratories this means improved customer partnership beyond operational excellence. Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution.

This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices.

Written in a tutorial form, the text supplies in-depth the physics, design, and fabrication technology for power devices. Each chapter includes a discussion of the basic concepts of device operation and their electrical characteristics, a detailed analysis of the device physics, and the technology of fabrication. Extensive analytical solutions are used to enable the reader to obtain an understanding of the physics.

This book provides a survey of the state of the art of technology and future trends in the new family of Smart Power ICs and describes design and applications in a variety of fields ranging from automotive to telecommunications, reliability evaluation and qualification procedures. The book is a valuable source of information and reference for both power IC design specialists and to all those concerned with applications, the development of digital circuits and with system architecture.

High reliability and system lifetimes in the range of 30 years are essential for renewable energy systems such as photovoltaic power plants to minimise costs for the generated electric energy. At the same time such systems are used in regions with high solar irradiance and also harsh environmental conditions. Therefore, designs for photovoltaic inverters need to meet not only the key design criteria of high conversion efficiency but

also need to be very robust and at the same time meet challenging cost targets. In this dissertation aspects concerning the lifetime and reliability of power semiconductors in photovoltaic central inverters are investigated. On key topic of the dissertation is the measurement of the voltage dependent failure rate due to cosmic radiation induced single-event-burnout of SiC and Si power semiconductors. The second topic is the development of a system level simulation to quantify the stress on the power semiconductors in a PV central inverters in various regions of the world. Further topics are the investigation of improved control concepts for the cooling system of PV central inverters and the monitoring of IGBT temperatures during converter operation. This book discusses semiconductor properties, pnjunctions and the physical phenomena for understanding power devices in depth. Working principles of state-ofthe-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. Special peculiarities of devices from the ascending semiconductor materials SiC and GaN are discussed. This book presents significant improvements compared to its first edition. It includes chapters on packaging and reliability. The chapter on semiconductor technology is written in a more in-depth way by considering 2D- and high concentration effects. The chapter on IGBTs is extended by new technologies and evaluation of its potential. An extended theory of cosmic ray failures is presented. The range of certain important physical relationships, doubted in recent papers for use in device

simulation, is cleared and substantiated in this second edition.

During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an indepth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of twodimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.

Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large

area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance Examines why diamond semiconductors could lead to superior power electronics Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics

An exploration of electric refractory materials, this book covers developments of blue light-emitting diodes using GaN-based nitrides for laser and high-temperature and -frequency devices. "Electric Refractory Materials" introduces growth and evaluation standards of films and bulk crystals, with consideration of band structure, surface electronic s

This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book. Introduces a new method to present power electronics converters called Power Blocks Geometry (PBG) Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters Offers a comprehensive set of

simulation results to help understand the circuits presented throughout the book

This book provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown.

This original contributed volume combines the individual expertise of eleven world-renowned professionals to provide comprehensive, authoritative coverage of state-of-the-art power electronics and AC drive technology. Featuring an extensive introductory chapter by power-electronics expert Bimal K. Bose and more than 400 figures, POWER ELECTRONICS AND VARIABLE FREQUENCY DRIVES covers each of the field's component disciplines and drives--all in one complete resource. Broad in scope and unique in its presentation, this volume belongs on the bookshelf of every industry engineer, professor, graduate student, and researcher involved in this fast-growing multidisciplinary field. It is an essential for teaching, research, development, and design.

A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-

mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for highfrequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter

design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology. The devices described in "Advanced MOS-Gated Thyristor Concepts" are utilized in microelectronics production equipment, in power transmission equipment, and for very high power motor control in electric trains, steel-mills, etc. Advanced concepts that enable improving the performance of power thyristors are discussed here, along with devices with blocking voltage capabilities of 5,000-V, 10,000-V and 15,000-V. Throughout the book, analytical models are generated to allow a simple analysis of the structures and to obtain insight into the underlying physics. The results of twodimensional simulations are provided to corroborate the analytical models and give greater insight into the device operation.

During the last decade, many new concepts have been proposed for improving the performance of power rectifiers and transistors. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. Advanced Power Rectifier Concepts provides an in-depth treatment of the physics of operation of advanced power rectifiers. Analytical models for explaining the operation of all the advanced power rectifier devices will be

developed. The results off numerical simulations will be provided to provide additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and provide greater insight into the device operation. This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration. Electrical drives lie at the heart of most industrial processes and make a major contribution to the comfort and high quality products we all take for granted. They provide the controller power needed at all levels, from megawatts in cement production to milliwatts in wrist watches. Other examples are legion, from the domestic kitchen to public utilities.

Page 13/20

The modern electrical drive is a complex item, comprising a controller, a static converter and an electrical motor. Some can be programmed by the user. Some can communicate with other drives. Semiconductor switches have improved, intelligent power modules have been introduced, all of which means that control techniques can be used now that were unimaginable a decade ago. Nor has the motor side stood still: high-energy permanent magnets, semiconductor switched reluctance motors, silicon micromotor technology, and soft magnetic materials produced by powder technology are all revolutionising the industry. But the electric drive is an enabling technology, so the revolution is rippling throughout the whole of industry.

The IGBT device has proved to be a highly important Power Semiconductor, providing the basis for adjustable speed motor drives (used in air conditioning and refrigeration and railway locomotives), electronic ignition systems for gasolinepowered motor vehicles and energy-saving compact fluorescent light bulbs. Recent applications include plasma displays (flat-screen TVs) and electric power transmission systems, alternative energy systems and energy storage. This book is the first available to cover the applications of the IGBT, and provide the essential information needed by applications engineers to design new products using the device, in sectors including consumer, industrial,

lighting, transportation, medical and renewable energy. The author, B. Jayant Baliga, invented the IGBT in 1980 while working for GE. His book will unlock IGBT for a new generation of engineering applications, making it essential reading for a wide audience of electrical engineers and design engineers, as well as an important publication for semiconductor specialists. Essential design information for applications engineers utilizing IGBTs in the consumer, industrial, lighting, transportation, medical and renewable energy sectors. Readers will learn the methodology for the design of IGBT chips including edge terminations, cell topologies, gate layouts, and integrated current sensors. The first book to cover applications of the IGBT, a device manufactured around the world by more than a dozen companies with sales exceeding \$5 Billion; written by the inventor of the device.

The growth of power electronics, centering on inverters and converters as its key system topology, has accelerated recently due to the demand for efficient power conversion. This growth has also been backed up by several evolutionary changes and breakthroughs achieved in the areas of power semiconductor device physics, process technology, and design. However, as power semiconductor technology remains a highly specialized subject, the literature on further research, development, and design in related fields is not adequate. With this in

view, two specialists of power semiconductors, well known for their research and contributions to the field, compiled this book as a review volume focusing on power chip and module technologies. The prime purpose is to help researchers, academia, and engineers, engaged in areas related to power devices and power electronics, better understand the evolutionary growth of major power device components, their operating principles, design aspects, application features, and trends. The book is filled with unique topics related to power semiconductors, including tips on state-of-the-art and futuristic-oriented applications. Numerous diagrams, illustrations, and graphics are included to adequately support the content and to make the book extremely attractive as a practical and userfriendly reference book for researchers, technologists, and engineers, as well as a textbook for advanced graduate-level and postgraduate students.

Power Electronics and Motor Drives: Advances and Trends, Second Edition is the perfect resource to keep the electrical engineer up-to-speed on the latest advancements in technologies, equipment and applications. Carefully structured to include both traditional topics for entry-level and more advanced applications for the experienced engineer, this reference sheds light on the rapidly growing field of power electronic operations. New content covers

converters, machine models and new control methods such as fuzzy logic and neural network control. This reference will help engineers further understand recent technologies and gain practical understanding with its inclusion of many industrial applications. Further supported by a glossary per chapter, this book gives engineers and researchers a critical reference to learn from real-world examples and make future decisions on power electronic technology and applications. Provides many practical examples of industrial applications Updates on the newest electronic topics with content added on fuzzy logic and neural networks Presents information from an expert with decades of research and industrial experience Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device). Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers

Page 17/20

power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community. Fundamentals of Power Semiconductor DevicesSpringer GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth

technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.

Ultra-wide Bandgap Semiconductors (UWBG) covers the most recent progress in UWBG materials, including sections on high-Al-content AlGaN, diamond, B-Ga2O3, and boron nitrides. The coverage of these materials is comprehensive, addressing materials growth, physics properties, doping, device design, fabrication and performance. The most relevant and important applications are covered, including power electronics, RF electronics and DUV optoelectronics. There is also a chapter on novel structures based on UWBG. such as the heterojunctions, the low-dimensional structures, and their devices. This book is ideal for materials scientists and engineers in academia and R&D searching for materials superior to silicon carbide and gallium nitride. Provides a onestop resource on the most promising ultra-wide bandgap semiconducting materials, including high-Al-content AlGaN, diamond, ?-Ga2O3, boron nitrides, and low-dimensional materials Presents comprehensive coverage, from materials growth and properties, to device design, fabrication and performance Features the most relevant applications. including power electronics, RF electronics and DUV optoelectronics

Semiconductor power devices are the heart of power Page 19/20

electronics. They determine the performance of power converters and allow topologies with high efficiency. Semiconductor properties, pn-junctions and the physical phenomena for understanding power devices are discussed in depth. Working principles of state-of-the-art power diodes, thyristors, MOSFETs and IGBTs are explained in detail, as well as key aspects of semiconductor device production technology. In practice, not only the semiconductor, but also the thermal and mechanical properties of packaging and interconnection technologies are essential to predict device behavior in circuits. Wear and aging mechanisms are identified and reliability analyses principles are developed. Unique information on destructive mechanisms, including typical failure pictures, allows assessment of the ruggedness of power devices. Also parasitic effects, such as device induced electromagnetic interference problems, are addressed. The book concludes with modern power electronic system integration techniques and trends.